Q: What is 5G?

A: 5G is the 5th generation mobile network. It is a new global wireless standard after 1G, 2G, 3G, and 4G networks. 5G enables a new kind of network that is designed to connect virtually everyone and everything together including machines, objects, and devices.

5G wireless technology is meant to deliver higher multi-Gbps peak data speeds, ultra low latency, more reliability, massive network capacity, increased availability, and a more uniform user experience to more users. Higher performance and improved efficiency empower new user experiences and connects new industries.


A graphic explaining that 5G is the fifth generation wireless network, highlighting key features and use-cases: mobile broadband, massive IoT, and mission-critical services.


Q: What are the differences between the previous generations of mobile networks and 5G?

A: The previous generations of mobile networks are 1G, 2G, 3G, and 4G.

First generation - 1G
1980s: 1G delivered analog voice.

Second generation - 2G
Early 1990s: 2G introduced digital voice (e.g. CDMA- Code Division Multiple Access).

Third generation - 3G
Early 2000s: 3G brought mobile data (e.g. CDMA2000).

Fourth generation - 4G LTE
2010s: 4G LTE ushered in the era of mobile broadband.

1G, 2G, 3G, and 4G all led to 5G, which is designed to provide more connectivity than was ever available before.

5G is a unified, more capable air interface. It has been designed with an extended capacity to enable next-generation user experiences, empower new deployment models and deliver new services.

With high speeds, superior reliability and negligible latency, 5G will expand the mobile ecosystem into new realms. 5G will impact every industry, making safer transportation, remote healthcare, precision agriculture, digitized logistics — and more — a reality.

What is 5G? Discover Qualcomm’s 5G rollout timing.

Q: Where is 5G being used?

A: Broadly speaking, 5G is used across three main types of connected services, including enhanced mobile broadband, mission-critical communications, and the massive IoT. A defining capability of 5G is that it is designed for forward compatibility—the ability to flexibly support future services that are unknown today.

Enhanced mobile broadband
In addition to making our smartphones better, 5G mobile technology can usher in new immersive experiences such as VR and AR with faster, more uniform data rates, lower latency, and lower cost-per-bit.

Mission-critical communications
5G can enable new services that can transform industries with ultra-reliable, available, low-latency links like remote control of critical infrastructure, vehicles, and medical procedures.

Massive IoT
5G is meant to seamlessly connect a massive number of embedded sensors in virtually everything through the ability to scale down in data rates, power, and mobility—providing extremely lean and low-cost connectivity solutions.




Q: What is 5G?

A: 5G is the 5th generation mobile network. It is a new global wireless standard after 1G, 2G, 3G, and 4G networks. 5G enables a new kind of network that is designed to connect virtually everyone and everything together including machines, objects, and devices.

5G wireless technology is meant to deliver higher multi-Gbps peak data speeds, ultra low latency, more reliability, massive network capacity, increased availability, and a more uniform user experience to more users. Higher performance and improved efficiency empower new user experiences and connects new industries.


A graphic explaining that 5G is the fifth generation wireless network, highlighting key features and use-cases: mobile broadband, massive IoT, and mission-critical services.

Q: What are the differences between the previous generations of mobile networks and 5G?

A: The previous generations of mobile networks are 1G, 2G, 3G, and 4G.

First generation - 1G
1980s: 1G delivered analog voice.

Second generation - 2G
Early 1990s: 2G introduced digital voice (e.g. CDMA- Code Division Multiple Access).

Third generation - 3G
Early 2000s: 3G brought mobile data (e.g. CDMA2000).

Fourth generation - 4G LTE
2010s: 4G LTE ushered in the era of mobile broadband.

1G, 2G, 3G, and 4G all led to 5G, which is designed to provide more connectivity than was ever available before.

5G is a unified, more capable air interface. It has been designed with an extended capacity to enable next-generation user experiences, empower new deployment models and deliver new services.

With high speeds, superior reliability and negligible latency, 5G will expand the mobile ecosystem into new realms. 5G will impact every industry, making safer transportation, remote healthcare, precision agriculture, digitized logistics — and more — a reality.

What is 5G? Discover Qualcomm’s 5G rollout timing.

Q: Where is 5G being used?

A: Broadly speaking, 5G is used across three main types of connected services, including enhanced mobile broadband, mission-critical communications, and the massive IoT. A defining capability of 5G is that it is designed for forward compatibility—the ability to flexibly support future services that are unknown today.

Enhanced mobile broadband
In addition to making our smartphones better, 5G mobile technology can usher in new immersive experiences such as VR and AR with faster, more uniform data rates, lower latency, and lower cost-per-bit.

Mission-critical communications
5G can enable new services that can transform industries with ultra-reliable, available, low-latency links like remote control of critical infrastructure, vehicles, and medical procedures.

Massive IoT
5G is meant to seamlessly connect a massive number of embedded sensors in virtually everything through the ability to scale down in data rates, power, and mobility—providing extremely lean and low-cost connectivity solutions.